Skip to main content
Log in

Temporal variation of intertidal seagrass in southern China (2008–2014)

  • Article
  • Published:
Ocean Science Journal Aims and scope Submit manuscript

Abstract

Understanding the temporal dynamics of seagrasses and the major influences on seagrass growth is critical for seagrass habitat conservation and administration. However, little work has been done regarding these issues in southern China. To examine inter-annual and seasonal variations of the intertidal Halophila ovalis community in southern China, we conducted quarterly sampling using the SeagrassNet methodology and assessed environmental conditions as well as direct anthropogenic impacts on the seagrass meadow from July 2008 to October 2014. Our study demonstrated strong inter-annual and seasonal dynamics of the intertidal seagrass meadow in the study area. Generally, the community performed best (highest seagrass cover, leaf area, shoot density, total biomass) in summer and worst in spring among the 4 seasons. The temporal variations in the seagrass community attributes (e.g. above-ground biomass) were significantly affected by precipitation, atmospheric visibility, and salinity, while leaf width was significantly negatively correlated with temperature, atmospheric visibility and salinity. Temperature was a major factor influencing the seagrass community (both macroalgae and seagrass), with temperature data showing an inverse relationship between seagrass and macroalgae. The above-ground: below-ground biomass ratio and leaf width of H. ovalis were the most sensitive plant parameters monitored when assessing environmental interactions. Human physical disturbances did not have a significant effect on seagrass dynamics in the study area. We concluded that long-term monitoring (like SeagrassNet) is valuable in understanding the relationship between environmental variables and seagrasses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alcoverro T, Duarte CM, Romero J (1995) Annual growth dynamics of Posidonia oceanica - contribution of large-scale versus local factors to seasonality. Mar Ecol-Prog Ser 120: 203–210

    Article  Google Scholar 

  • Alexandre A, Santos R, Serrao E (2005) Effects of clam harvesting on sexual reproduction of the seagrass Zostera noltii. Mar Ecol-Prog Ser 298: 115–122

    Article  Google Scholar 

  • Beer S, Mtolera M, Lyimo T, Björk M (2006) The photosynthetic performance of the tropical seagrass Halophila ovalis in the upper intertidal. Aquat Bot 84: 367–371

    Article  Google Scholar 

  • Boese BL (2002) Effects of recreational clam harvesting on eelgrass (Zostera marina) and associated infaunal invertebrates: in situ manipulative experiments. Aquat Bot 73: 63–74

    Article  Google Scholar 

  • Brun FG, Hernandez I, Vergara JJ, Perez-Llorens JL (2003) Growth, carbon allocation and proteolytic activity in the seagrass Zostera noltii shaded by Ulva canopies. Funct Plant Biol 30: 551–560

    Article  Google Scholar 

  • Cabaço S, Alexandre A, Santos R (2005) Population-level effects of clam harvesting on the seagrass Zostera noltii. Mar Ecol-Prog Ser 298: 123–129

    Article  Google Scholar 

  • Cardoso PG, Pardal MA, Lilleb AI, Ferreira SM, Raffaelli D, Marques JC (2004) Dynamic changes in seagrass assemblages under eutrophication and implications for recovery. J Exp Mar Biol Ecol 302: 233–248

    Article  Google Scholar 

  • Collier CJ, Villacorta-Rath C, van Dijk KJ, Takahashi M, Waycott M (2014) Seagrass proliferation precedes mortality during hypo-salinity events: a stress-induced morphometric response. PLoS One 9:e94014

    Article  Google Scholar 

  • den Hartog C, Yang Z (1990) A catalogue of the seagrasses of China. Chin J Oceanol Limn 8: 74–91

    Article  Google Scholar 

  • Duarte CM (1991) Allometric scaling of seagrass form and productivity. Mar Ecol-Prog Ser 77: 289–300

    Article  Google Scholar 

  • Duarte CM (2002) The future of seagrass meadows. Environ Conserv 29: 192–206

    Article  Google Scholar 

  • Duarte CM, Fourqurean JW, Krause-Jensen D, Olesen B (2006) Dynamics of seagrass stability and change. In: Larkum AWD, Orth RJ, Duarte CM (eds) Seagrasses: biology, ecology and conservation. Springer, Dordrecht, pp 271–294

    Google Scholar 

  • Erftemeijer PLA, Herman PMJ (1994) Seasonal changes in environmental variables, biomass, production and nutrient contents in two contrasting tropical intertidal seagrass beds in South Sulawesi, Indonesia. Oecologia 99: 45–59

    Article  Google Scholar 

  • Fonseca MS, Kenworthy WJ, Thayer GW (1998) Guidelines for the conservation and restoration of seagrasses in the United States and adjacent waters. NOAA Coastal Ocean Office, Maryland, NOAA Coastal Ocean Program Decision Analysis Series No. 12, 222 p

    Google Scholar 

  • Hillman K, McComb AJ, Walker DI (1995) The distribution, biomass and primary production of the seagrass Halophila ovalis in the Swan/Canning Estuary, Western Australia. Aquat Bot 51: 1–54

    Article  Google Scholar 

  • Huong TTL, Vermaat JE, Terrados J, Van Tien N, Duarte CM, Borum J, Tri NH (2003) Seasonality and depth zonation of intertidal Halophila ovalis and Zostera japonica in Ha Long Bay (northern Vietnam). Aquat Bot 75: 147–157

    Article  Google Scholar 

  • Jankowska E, Włodarska-Kowalczuk M, Kotwicki L, Balazy P, Kuliński K (2014) Seasonality in vegetation biometrics and its effects on sediment characteristics and meiofauna in Baltic seagrass meadows. Estuar Coast Shelf S 139: 159–170

    Article  Google Scholar 

  • Kim J-H, Kim SH, Kim YK, Park J-I, Lee K-S (2016) Growth dynamics of the seagrass Zostera japonica at its upper and lower distributional limits in the intertidal zone. Estuar Coast Shelf S 175: 1–9

    Article  Google Scholar 

  • Kim J-H, Park SH, Kim YK, Kim SH, Park J-I, Lee K-S (2014) Seasonal growth dynamics of the seagrass Zostera caulescens on the eastern coast of Korea. Ocean Sci J 49: 391–402

    Article  Google Scholar 

  • Kim YK, Kim SH, Lee K-S (2015) Seasonal growth responses of the seagrass Zostera marina under severely diminished light conditions. Estuar Coast 38: 558–568

    Article  Google Scholar 

  • Kuo Y-M, Lin H-J (2010) Dynamic factor analysis of long-term growth trends of the intertidal seagrass Thalassia hemprichii in southern Taiwan. Estuar Coast Shelf S 86: 225–236

    Article  Google Scholar 

  • Lee K-S, Park SR, Kim YK (2007) Effects of irradiance, temperature, and nutrients on growth dynamics of seagrasses: a review. J Exp Mar Biol Ecol 350: 144–175

    Article  Google Scholar 

  • Lee SY, Kim JB, Lee SM (2006) Temporal dynamics of subtidal Zostera marina and intertidal Zostera japonica on the southern coast of Korea. Mar Ecol 27: 133–144

    Article  Google Scholar 

  • Lin HJ, Shao KT (1998) Temporal changes in the abundance and growth of intertidal Thalassia hemprichii seagrass beds in southern Taiwan. Bot Bull Acad Sin 39: 191–198

    Google Scholar 

  • Liu F, Pang SJ, Chopin T, Xu N, Shan TF, Gao SQ, Sun S (2009) The dominant Ulva strain of the 2008 green algal bloom in the Yellow Sea was not detected in the coastal waters of Qingdao in the following winter. J Appl Phycol 22: 531–540

    Article  Google Scholar 

  • Marbà N, Cebrian J, Enriquez S, Duarte CM (1996a) Growth patterns of western Mediterranean seagrasses: species-specific responses to seasonal forcing. Mar Ecol-Prog Ser 133: 203–215

    Article  Google Scholar 

  • Marbà N, Duarte CM (1998) Rhizome elongation and seagrass clonal growth. Mar Ecol-Prog Ser 174: 269–280

    Article  Google Scholar 

  • Marbà N, Duarte CM, Cebrian J, Gallegos ME, Olesen B, SandJensen K (1996b) Growth and population dynamics of Posidonia oceanica on the Spanish Mediterranean coast: elucidating seagrass decline. Mar Ecol-Prog Ser 137: 203–213

    Article  Google Scholar 

  • Marques LV, Short FT, Creed JC (2014) Sunspots drive seagrasses. Biol Rhythm Res 46: 63–68

    Article  Google Scholar 

  • Meling-Lopez AE, Ibarra-Obando SE (1999) Annual life cycles of two Zostera marina L. populations in the Gulf of California: contrasts in seasonality and reproductive effort. Aquat Bot 65: 59–69

    Article  Google Scholar 

  • NMDIS (2012) Tide table 2013 (vol. 3) from the Taiwan straits to the Beibu gulf. National Marine Data and Information Service (NMDIS), Ocean Press, Beijing, 587 p

    Google Scholar 

  • Neckles HA, Short FT, Barker S, Kopp BS (2005) Disturbance of eelgrass Zostera marina by commercial mussel Mytilus edulis harvesting in Maine: dragging impacts and habitat recovery. Mar Ecol-Prog Ser 285: 57–73

    Article  Google Scholar 

  • Nguyen VX, Detcharoen M, Tuntiprapas P, Soe-Htun U, Sidik JB, Harah MZ, Prathep A, Papenbrock J (2014) Genetic species identification and population structure of Halophila (Hydrocharitaceae) from the Western Pacific to the Eastern Indian Ocean. BMC Evol Biol 14: 92. doi: 10.1186/1471-2148-14-9292

    Article  Google Scholar 

  • Onuf CP (1996) Sea grass response to long-term light reduction by brown tide in upper Laguna Madre, Texas: distribution and biomass patterns. Mar Ecol-Prog Ser 138: 219–231

    Article  Google Scholar 

  • Park SR, Kim S, Kim YK, Kang CK, Lee KS (2016) Photoacclimatory responses of Zostera marina in the intertidal and subtidal zones. PLoS One 11:e0156214. doi:10.1371/journal.pone.0156214

    Article  Google Scholar 

  • Park SR, Kim YK, Kim J-H, Kang C-K, Lee K-S (2011) Rapid recovery of the intertidal seagrass Zostera japonica following intense Manila clam (Ruditapes philippinarum) harvesting activity in Korea. J Exp Mar Biol Ecol 407: 275–283

    Article  Google Scholar 

  • Qiu G, Fan H, Li Z, Liu G, Shi Y, Li S (2013) Population dynamics and seed banks of the threatened seagrass Halophila beccarii in Pearl Bay, Guangxi. Acta Ecol Sin 33: 6163–6172

    Article  Google Scholar 

  • Ralph PJ, Burchett MD (1995) Photosynthetic responses of the seagrass Halophila ovalis (R. Br.) Hook. f. to high irradiance stress, using chlorophyll a fluorescence. Aquat Bot 51: 55–66

    Article  Google Scholar 

  • Ralph PJ, Gademann R, Dennison WC (1998) In situ seagrass photosynthesis measured using a submersible, pulse-amplitude modulated fluorometer. Mar Biol 132: 367–373

    Article  Google Scholar 

  • Robbins BD, Bell SS (2000) Dynamics of a subtidal seagrass landscape: seasonal and annual change in relation to water depth. Ecology 81: 1193–1205

    Article  Google Scholar 

  • Short FT, Coles R, Fortes MD, Victor S, Salik M, Isnain I, Andrew J, Seno A (2014) Monitoring in the Western Pacific region shows evidence of seagrass decline in line with global trends. Mar Pollut Bull 83: 408–416

    Article  Google Scholar 

  • Short FT, Koch EW, Creed JC, Magalhaes KM, Fernandez E, Gaeckle JL (2006a) SeagrassNet monitoring across the Americas: case studies of seagrass decline. Mar Ecol 27: 277–289

    Article  Google Scholar 

  • Short FT, Mckenzie LJ, Coles RG, Vidler KP, Gaeckle JL (2006b) SeagrassNet manual for scientific monitoring of seagrass habitat (Worldwide edition). University of New Hampshire Publication, Durham, 75 p

    Google Scholar 

  • Sidik BJ, Harah ZM, Fakhrulddin IM, Anuar MSK, Arshad A (2010) Growth performance of Malaysian’s spoongrass, Halophila ovalis (R.Br.) Hooker f. under different substrate, salinity and light regime. Coast Mar Sci 34: 103–107

    Google Scholar 

  • SAQSIQ (2007) The specification for marine monitoring-part 4: seawater analysis. The State Administration of Quality Supervision, Inspection and Quarantine (SAQSIQ), China Standards Press, Beijing, 162 p

    Google Scholar 

  • UNEP (2008) National reports on seagrass in the South China Sea. UNEP/GEF/SCS Technical Publication No. 12

    Google Scholar 

  • Vermaat JE, Verhagen FCA (1996) Seasonal variation in the intertidal seagrass Zostera noltii Hornem.: coupling demographic and physiological patterns. Aquat Bot 52: 259–281

    Article  Google Scholar 

  • Xun Z, Ruan C, Yang Y, Fang B, Ou Y (2006) Tidal effects of groundwater levels in the coastal aquifers near Beihai, China. Environ Geol 51: 517–525

    Article  Google Scholar 

  • Zhang PD, Liu YS, Guo D, Li WT, Zhang Q (2016) Seasonal variation in growth, morphology, and reproduction of eelgrass Zostera marina on the eastern coast of the Shandong Peninsula, China. J Coastal Res 32: 315–322

    Article  Google Scholar 

  • Zhang X, Zhou Y, Liu P, Wang F, Liu B, Liu X, Yang H (2015) Temporal pattern in biometrics and nutrient stoichiometry of the intertidal seagrass Zostera japonica and its adaptation to air exposure in a temperate marine lagoon (China): implications for restoration and management. Mar Pollut Bull 94: 103–113

    Article  Google Scholar 

  • Zheng F, Qiu G, Fan H, Zhang W (2013) Diversity, distribution and conservation of seagrass species in China. Biodivers Sci 21: 517–526

    Google Scholar 

  • Zhou Y, Liu X, Liu B, Liu P, Wang F, Zhang X, Yang H (2015) Unusual pattern in characteristics of the eelgrass Zostera marina L. in a shallow lagoon (Swan Lake), north China: implications on the importance of seagrass conservation. Aquat Bot 120: 178–184

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guohua Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, G., Short, F.T., Fan, H. et al. Temporal variation of intertidal seagrass in southern China (2008–2014). Ocean Sci. J. 52, 397–410 (2017). https://doi.org/10.1007/s12601-017-0039-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12601-017-0039-y

Key words

Navigation